Superconductor Development in Europe

Arnaud Devred CEA-DSM-DAPNIA-STCM

VLHC Magnet Workshop 24-26 May 2000

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

NbTi Production

- NbTi production is mainly driven by LHC: 474 t (2370 km) of inner cable,
 736 t (4025 + 575 km) of outer + quad. cable
- Requires ~50% increase in wire and cable production over the next five years (yearly production will become ~1/3 LHC, 1/3 IRM and 1/3 other)

LHC Inner Cable

STRAND CHARACTERISTICS

Diameter: 1.065 <u>+</u> 0.0025 mm

1.6 £ Cu/Sc £ 1.7

Filament diameter : ~7 µm Number of filaments: ~8900

Stabrite coating (between 0.4 and 0.6 µm)

CABLE CHARACTERISTICS

Rutherford-type cable

28 strands

Thick-edge thickness: 2.064 ± 0.006 mm

Thin-edge thickness: 1.736 ± 0.006 mm

Width: 15.1 + 0/-0.02 mm

Critical Current (4.2 K, 7 T): 3 14140 A Critical Current (1.9 K, 10 T): 3 13750 A

Courtesy

LHC Outer Cable

STRAND CHARACTERISTICS

Diameter: 0.8250 + 0.0025 mm

1.9 £ Cu/Sc £ 2.0

Filament diameter: ~6 µm Number of filament: ~6400

Stabrite coating (between 0.4 and 0.6 µm)

CABLE CHARACTERISTICS

Rutherford-type cable

36 strands

Thick-edge thickness: 1.598 ± 0.006 mm Thin-edge thickness: 1.362 ± 0.006 mm

Width: 15.1 + 0/- 0.02 mm

Critical Current (4.2 K, 6 T): 3 13230 A Critical Current (1.9 K, 9 T): 3 12960 A

Sharing of LHC Production

Manufacturer	Process	Inner	Outer	Cabling
Alstom	Single	5/8	3/8	In house
(France)	Stacking	(296 t)	(276 t)	
Europa Metalli	Double		3/8	Brugg
(Italy)	Stacking		(276 t)	(Switzerland)
Vac	Double	3/8		Brugg
(Germany)	Stacking	(178 t)		(Switzerland)
IGC (USA)	Single Stacking		1/8 (92 t)	NEEW
Furukawa (Japan)	Single Stacking		1/8 (92 t)	In house

Status of LHC Production

- Contracts signed during second semester of 1998
- Production is gearing up at various manufacturers
- First 45 unit batches of inner wires (28x460 m) and first 31 unit batches of outer wires (36x750 m) ready to be cabled
- Production to be completed by 2004

LHC Production at ALSTOM

Clean room for billet assembly

Drawing bench

Cabling machine

Tyical Results of LHC Production (after L. Oberli)

- Critical current on virgin wires
 - Inner: J_c (4.2 K, 7 T) » 1550-1600 A/mm²
 - Outer: J_c (4.2 K, 6 T) » 2300 A/mm²
- Cabling degradation between 2 and 3%

Main challenges of LHC Production (after G. Grünblatt)

- Control of Cu-to-NbTi ratio (±0.03 from billet to billet)
- Control of crossover resistances
 (15 to 20 mW for inner cable and 30 to 40 mW for outer cable): stabrite
 (SnAg) coating + heat treatment on final cable
- No cold welds allowed

Wire Short Sample Tests

It is foreseen
 to perform
 30 000 wire
 short sample
 tests at CERN

(Bldg. 163 at CERN; courtesy A. Verweij)

Cable Short Sample Tests

• It is foreseen to perform ~3000 cable short sample tests at BNL and ~1000 tests at CERN

(9.5-T, 30-kA cable test facility at CERN; courtesy A. Verweij)

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

ITER Production

• The production of Nb₃Sn wires has been fueled in the 90's by the ITER program, which required two different wire types:

Туре	J _C at 4.2 K and 12 T (A/mm ² -non-Cu)	Hyst. Losses for a ± 3 T cycle (mJ/cm ³ -non-Cu)	Quantity (tonnes)
High Perf. I	700	600	6.5
High Perf. II	550	200	16.5

ITER Production (Cont.)

- One Western European vendor (Europa Metalli in Italy) was qualified for HP1 production (along with IGC and TWCA in the USA)
- One western European vendor (Vac in Germany) and one Russian vendor (Bochvar Institute in Moscow) were qualified for HP2 production (along with Furukuwa, Hitachi and Mitsubishi in Japan)
- Bochvar did produce some small quantity that was OK, but had to stop because of the financial problems of the Russian Federation
- ITER wire production was completed in 1997

Results of ITER Production

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

CEA/Saclay-Alstom Collaboration

- CEA/DSM/DAPNIA/STCM has started in 1996 a collaboration with Alstom to develop high performance Nb₃Sn wire and cable and to build a short quadrupole magnet model
- The wire specification was inspired from ITER/HP1
- The program has been slow moving at CEA/Saclay because of lack of manpower, but Alstom has completed its share of the R&D work and is ready to start the production of the final cable lengths (5x60 m)

Nb₃Sn R&D at Alstom

(Courtesy R. Otmani)

- The collaboration has enabled Alstom to produce:
 - an "internal-tin" Nb_3Sn wire with a J_c (non-Cu) of 750 A/mm² at 4.2 K and 12 T and an effective filament size of 18 mm
 - a Rutherford-type cable
 with a 25-mm-thick stainless
 steel (annealed 316L) core

Nb₃Sn R&D at Alstom (Cont.)

(Modified from P.J. Lee)

Critical Current Density @12 T, 0.1µV/cm, 4.2 K (A/mm²)

New CEA/Saclay-Alstom Collaboration

- Discussions are now underway with Alstom on a new collaboration to develop a wire with a $J_{\rm C}$ (non-Cu) of 2000 A/mm² at 4.2 K and 12 T and no specification on effective filament diameter (except that the wire should be stable against flux jump)
- Such wire could be used to build a second quadrupole magnet model that would be suitable for the final focusing of TESLA (see my other talk at this workshop)

INFN/Milan-Europa Metalli Collaboration

- INFN/MILAN (LASA) has worked from 1995 to 1999 with Europa Metalli to develop Nb₃Sn wires for accelerator magnet applications
- The goal was to achieve a $J_{\rm C}$ (non-Cu) of 1800 A/mm² at 4.2 K and 12 T, to meet the requirements of a conceptual design for a large-aperture (70 mm), high-field-gradient (300 T/m) quadrupole magnet to upgrade the LHC inner triplets (see my other talk at this workshop)
- The program is presently on hold due to lack of funding

Nb₃Sn R&D at Europa Metalli

• The best J_C values were obtained in 1998 for a 0.9 mm, "internal-tin" wire of the so-called "high-field" layout: ~1975 A/mm² at 4.2 K and 12 T (non-Cu)

(Courtesy L. Rossi)

Nb₃Sn R&D at Europa Metalli (Cont.)

• However the high- $J_{\rm C}$ wire exhibits signs of instability and the effective filament diameter is 108 mm

Close-up view of a bundle ("high-field" layout)

Before HT

After HT

(Courtesy L. Rossi)

Nb₃Sn R&D at Europa Metalli (End)

- Stable performances are obtained on lower $J_{\rm C}$ wires of the so-called "3-sector" layout: 1450 to
 1500 A/mm² at 4.2 K and 12 T (non-Cu) with 60 to
 70 mm effective filament diameter
- $I_{\rm C}$ degradation for various types of Rutherfordtype cables made from these strands has been measured to be between 10 and 20% (in the 12 to 14 T field range)
- $I_{\rm C}$ vs. tranverse stress measurements, performed at Twente University on a 1°-keystoned cable, showed less than 7% degradation at 200 MPa

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

Nb₃Sn Developement at ECN

- In the 1980's, ECN (Netherlands Energy Research Foundation) has developed a quite successful "Powder In Tube" (PIT) process for Nb₃Sn wires
- The production was stopped in 1992 after internal restructuring at ECN and reorientation on core activities

ECN Process

(Courtesy A. den Ouden)

- The ECN process is in twosteps:
 - production of monofilaments by compaction of Nb₂Sn and Sn powders inside a Cu liner fitted within Nb and Cu tubes
 - stacking of hexagonally drawn-down monofilaments inside a Cu can
- It only requires short heat treatment (<48 hours)

Best Results of ECN Process

(Courtesy H.H.J. ten Kate)

- The best results were obtained in 1987 with a J_c (non-Cu) of 1600 A/mm² at 4.2 K and 11 T (physical filament diameter of 20 mm)
- ECN-processed wires were used in the dipole magnet model built at Twente University and tested at CERN in 1995, which reached 11.03 T on its first quench at 4.4 K

Nb₃Sn R&D at Twente University

• Twente University has signed in 1998 a 3-year contract with CERN and NIKEF to build a 88-mm-aperture dipole magnet model, with a 10 T operating field (at 4.4 K), that could be used as a second-generation, beam-separation magnet in the LHC interaction regions. Test is scheduled at CERN in June 2001.

(Courtesy A. den Ouden)

Resumption of PIT production at ShapeMetal Innovation

(Courtesy A. den Ouden)

- With Twente University support, ShapeMetal Innovation (SMI) has acquired ECN tooling and know-how and has resumed PIT production in the late 1990's
- SMI has recently achieved a record $J_{\mathbb{C}}$ (non-Cu) of 2300 A/mm² at 4.2 K et 12 T with an effective filament diameter of 50 mm (50 kg billet)

Contents

- NbTI
- Nb₃Sn
 - ITER
 - CEA/Saclay-Alstom
 - INFN/Milan-Europa Metalli
 - PIT in the Netherlands
- HTS

HTS Production in Europe

- Bi-2212 Tape
 - Alcatel (France)
- Bi-2223 Tape
 - Nordic Superconductor Technologies (NST, Denmark)
 - Vacuumschmelze (Germany)

Alcatel Production

 Alcatel has set up a production facility at Jeumont (France) for Bi-2212 PIT tape

(Courtesy P.F. Herrmann)

- Engineering J_c presently achieved are:
 - 775 A/mm² (at 4.2 K, self-field) on short lengths
 - 450 to 500 A/mm² (at 4.2 K, self-field) on kilometric lengths